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/ problem considered here is the stability of solutions of non=-
lircar difference-equations containing random elements. Guided by the
Liapounov theory for deterministic systems we introduce the concepts of

& random equilibrium point and stability of a random solution in probta-
bility as well as an almost everywhere or almost sure asymptotic stability.
Thege concepts seem the xh.tural counterparts for random systems of the
Idapounocv theory with positive supermartingeles (see [3]) corresponding

to Liapounov functions.

g The results obtained are roughly as follows. A sufficient condi-

tion for stability in protabllity is the existence of a positive definite

contimwus function which is a supermartingale along the solutions and

faor asymptotic stability ‘almost everywhere the existence of a decreasing

C g ’ ?)sitive supermartingale., Showing the counterpart of t.he Massere tmy%&

- (see [5]), namely that the existence. of a Iiapounov function is a B

sary condition for an appropriate type of stability, seems as yet elusive,
In particular we give exnmples of the application of the above theorems
to random difference equations. Of course our results geperalize to n.ndm
differential equations. However the details tend to obscure the ideas and
the generalization is not given here,
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I. Definitions and theorems,
We consider the following random system of equations

x, = f(xn_l, r n-l) (1.1)

and x, & given random vector variable, wvhere f 1is a contimwus real
valued vector function and Thal & sequence of random quantities., It
vill be assumed that there exist an a.e. unique random variable x,

satisfying

x, = £(x,, r,) forall nZ0 (1.2)

and x, will be called an equilibrium point. ‘I.nthe sequel it will be

necessary to distinguish two situations; namely

1) x, and x are almost everywhere constant a.e. P(l).

2) Either or both x, and x  are not a.e. constant P.

The first case will be called degenerate. Now we define a class of
allowable initial conditions in the degenerate and nondegenerate cases;

Definition 1. C(M, x_ ) is the class of all initial random variables
P e m
such that ess supllx; - x || = M in the nondegererate case and all

X
1
a.e, constant random variables in the degenerate case.

Having defined an admissible class of initial conditions C(M, xe)
we introduce the following concepts of stability ani esymptotic stability
of an equilibrium point of (1.1)y denoting by @(n, xl) the solution of

(1.1) with initial condition x,.

(1) | | denotes Euclidean norm, and P the probability measure,
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Definition 2. An equilibrium poimt x, of (1.1) is stable relative
to ¢(M x,) iff for every € >0 there exists & 5 >0 such that for
every x; € C(M, x,) satisfying P(lx, - xejl 2 5) <5 then
P(]|g(n, x,) - x || 2€) <e forall nzo.

Definition 3. An equilibrium point x, of (1.1) is asymptotically.
stable relative to C(M, xe) iff it is stable relative to C(M, xe) and

for all x, € c(y, xe)

lo(n, 1-1). -x]l 0 a.e. P a8 noe,

In the degenerate case relative to C{M, xe) will be deleted from refer-
ence to these stabilities. C(M, xe) 4s in fact the get of raniom variables

close to x, in an almost everywvhere sense.

In order to state our stability theorems it will be necessary to
introduce the concept of a supermartingale. '

Definition k. A sequence of random variables y, and 3;1 sigma
flelds form a supermartingale sequence iff y n 18 the minimal sigma
field over (yl, seey yn) and -

E(ynl gn-l) = yn-l 8.C. P,

where E( I;}fn) is the conditioral expectation [see [2] Chapter VIII.]
Fow the following theorem gives & sufficient condition for stability.

Theorem 1. Suppose there exists a positive definite continuous function V
continuous at « such that V(0) = O and the sequence V(@n, x;) -x,)
for all x, € C(M, x,) 18 a supermartingale with x, an equilibrium point

1 .
of (1.1). Then x  is stable relative to c(M, xe).
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Proof. There exist o and B continuous positive non-decreasing func-

tions such that

allh - x,) = V(x -x,) % 8l - x,I) (L3

[see [1] proof of corollary [1.2] for the construction]. Kow for any
nondecreasing positive function (Borel function) g and random variable

x it is known that

2—5(—)——5-(-()-.: rrgly) S Pxzals E—E{—}g X | (1)

bee for example [3] page 157]. Now for any € >0 choose B suffi-

* ‘clently smll so that

€ afe) > oa(M) + B(8). (1.5)

For any x, € c(M, xe) chosen so that
5>P(llx1 -xeu Zz3)

1t follows from (1.k) that

sp(lx, - x ) - B(8) EV(x; -x,) - B(3)
P(ly - xll 2 8) 2 e ;;;7 2 —2 300 . (1.6)

Consequently (1.6) and the supermartingale property implies



5=

5B(M) + B(5) 2 EV(x, - x.) % EV(¢(n, x;) - x,)

z Eo(llo(n, x;) - x, 1) = o()P(lleln, x,) - x| =€)
and using (i.h) or with (1.5) that
P([l¢(n, gl) - "e" 2 €) <€ independently of n. (L.7)

Regarding asymptotic stability the following theorem holds:

asorem 2. Suppose the assumptions of the previous theorem hold and further
that there exists a continuous function y such that 7(0) = 0O and

EV(Kn, %) = x,) P )= Voo, x) = x,) & = rlload, x,) - x,]1) <0

for all x, € oM, x,). Then x  an equilibrium solution of (1.1) is
asymptotically stable relative to C(M, x ).

Proof. let N = lo(n, x,) - xéll. Now letting V, denote V(¢(n, %)) - x,)
it follows that

EV

n.
w1 -V ® ):-Er(xi) for all nAEO

i=0
or

0os ;Er(ni) s ﬁo s p(M) < =, (1.8)
1=0 |

But (1.8) implies since 1 >0 that
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Er(lln) -0 88 n =, (1.9)

As T(Nn) -0 in probability pick a subsequence n_, 50 that 'r(lln ) -0

almost surely. Then a8 Yy 1is contimuous and vanishes only at zero v

K, -0 almost surely. Doob's semi-martingale convergence theorem (see
[35 page 324) applied to {-Vn] implies there exists a V such that

v %25 v as Ev, 5 p(N). (2.0)

However using the o and B introduced in Theorem 1
B(N) =V, = o) (2.1)

80 that taking the limit of the left side of (2.1) along n, implies
(o) =V = 0.,

Hence V=0 a.e. or from (2.1) 0 = o(lim K) since o 1s contimuous
and

1im ||@(n, x) - xel] =0 a.e.P.

Now we apply the previous theorems to the following examples,

Example 1.

Iet xp =A ;x . vhere A , are independent identically distri«
buted random matrices and suppose there exists & positive definite matrix
B so that mx'xmn - B 1is negative definite., Then O is asymptotically



stable relative to C(M, 0) for any M, since with V(x) = x'Bx
Theorem 2 is seen to apply. Further, for any initial vector random .
variable x, .such that Exémo <o, x, -0 a.e.P 2a.nd I.2 as can
be seen by examimation of the proof of Theorem 2. L° convergence of
the system is of course well known under a tensor product condition

corresponding to the above condition (see [7]).

Example 2.

We consider the following system -
X, =8 01 * %’

2
1- Znal
5:;-1’ -1 = *n-1 ("""""'1 . ‘ﬁ-)’n-l = Tpar®nal
4 .

where (a, B, Y, 3, €,) are pairvise inlependent mean zero u‘ndm'nri-
a‘bles a.nd for each n, gn ete. e.re identically distributed., BNow if =
x(a + 7] ) <1l anmd B(qn-o-p +€ ) <1 then the equilibrium point (o, 0)
is seen to be asymptotically stable by Theorem 2 using the function

V(x, y) =x° + ¥

In [4) a rather similar definition of stability in probability is given
but the results are weaker, and almost sure stability is not considered.

We mention that & result of the type of [1], section 9,can easily be cbtained

for the stability of an optimized stochastic comtrol system (see [6]).
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